
1

Student ID card Barcode

Recognition for

Android Mobile Phone

Project Report

Student Name: Long Long

Student ID: C00131028

Supervisor: Christophe Meudec

Date: 16 Apr 2010

http://glasnost.itcarlow.ie/~meudecc/index.html

2

Contents

Introduction ... 3

1. Problems Encountered and Solutions .. 3

1.1 Problems .. 3

1.2 Solutions... 3

2. What is achieved .. 7

3. What is not achieved.. 8

3.1 A red scan line in the middle of the camera preview frame 8

3.2 Log of previous recognized barcode .. 8

3.3 Management system for web server ... 8

4. What I learned.. 9

5. What would do differently ... 9

6. Updates to earlier reports.. 10

6.1 Research ... 10

6.2 Design Manual ... 12

6.2.1 GUI... 12

6.2.2 Domain Model .. 15

6.2.3 Class Diagram .. 16

6.2.4 Web server .. 17

7. Module description .. 19

8. Testing .. 22

8.1 Functional testing... 22

8.2 Reliability testing .. 27

8.3 Recognize time testing ... 28

9. Conclusion .. 29

Reference ... 30

3

Introduction

This project report makes a further introduction about the entire project, including

problems encountered and solutions, what is achieved and what is not achieved,

project modules, testing and some updates to previous manuals.

There are some sample barcode images in testing part, please wait a second if this

file loading a bit slowly.

1. Problems Encountered and Solutions

1.1 Problems

1. Cannot capture image data from camera

2. Auto focus works only for the first time

3. Cannot do grey scaling for the captured image data properly

4. Hard to find a threshold value work for every condition(different luminance

condition)

5. Hard to find a perfect edge trimming algorithm to get barcode region
6. Image gridding problem

1.2 Solutions

1. Cannot capture image data from camera

Looking up Android develop guide[1] and API documents[2], I found the way to

capture image from camera is to add a Camera.PictureCallback for camera. Syntax

like:

(Add pictureCallback for mCamera)

For pictureCallback, we should new a Camera.PictureCallback and override the

function onPictureTaken, and then we can do image pre-processing inside this

function.

Syntax:

http://developer.android.com/reference/android/hardware/Camera.PictureCallback.html
http://developer.android.com/reference/android/hardware/Camera.PictureCallback.html

4

(Initialize a PictureCallback)

However, this method is for capturing one single image, not for capturing a

continuous image data stream. By the guide and API doc, I found the second way

to capture images, and it does capture a continuous image data stream, so that I

can do scanning and pre-process image at real time instead of capturing just one
single image at a time and pre-process it after.

Syntax:

(Add previewCallback for mCamera)

(Initialize a previewCallback)

2. Auto focus works only for the first time

The way I did before was adding auto focus one line before my takePicture

function, so this leads the problem that it works only for the first time. If we

request taking picture but cancel it(no picture taking) and request taking picture

again, the auto focus will not appear.

Looking at ZXing ’s project Barcode Scanner[3], I recognized one method to

achieve continuous auto focus is to send the request to the system message

queue and once the request is implemented we apply another, so in this way it

could simulate a continuous auto focus.

I’ve used this method for requesting previewCallback, so the program could get

both auto focus and preview working continuously.

3. Cannot do grey scaling for the captured image data properly

5

Because the pixel format of image data captured from previewCallback is not

RGB format. The methods I’ve tried to do grey scaling before are all for RGB

format. I checked Android Developer API document and found the pixel format

from previewCallback is YCbCr defaulting as YCbCr_420_SP which uses the NV21

encoding format.[4]

YCbCr_420_SP(NV21) is a sub type of YCbCr format. In YCbCr format, Y is the

luma component and Cb and Cr are the blue-difference and red-difference
chroma components.[5]

YCbCr_420_SP(NV21) description:

“These are two-plane versions of the YUV 4:2:0 format. The three components
are separated into two sub-images or planes. The Y plane is first. The Y plane has

one byte per pixel. For V4L2_PIX_FMT_NV12, a combined CbCr plane

immediately follows the Y plane in memory. The CbCr plane is the same width, in

bytes, as the Y plane (and of the image), but is half as tall in pixels. Each CbCr

pair belongs to four pixels. For example, Cb0/Cr0 belongs to Y'00, Y'01, Y'10, Y'11.

V4L2_PIX_FMT_NV21 is the same except the Cb and Cr bytes are swapped, the

CrCb plane starts with a Cr byte.

If the Y plane has pad bytes after each row, then the CbCr plane has as many pad

bytes after its rows.”[6]

So to do grey scaling, we read the first 2/3 of the image data and that ’s the grey

value for this piece of image. Therefore, we could do thresholding afterwards.

4. Hard to find a particular threshold value work for all conditions(different
luminance condition)

Different light condition has different average grey value for thresholding. For

example, threshold value for image captured outside is generally bigger than the

one captured inside; it for image captured in daytime is generally bigger than the
one captured in the evening.

So to determine a particular threshold value for all conditions is difficult and

would probably receive bad thresholding result. Then I change to build a

function called calThresholdValue that produce threshold values for each piece

of image. It calculates the number of “black” pixels and “white” pixels, and looks

for a value between them but a little closer to the “white” pixels. (At the

beginning, I use the middle value between them, but sometimes it won’t work.

So everytime I move it a little bit and finally find a good one. It ’s the least pixel

that next to the “white” value).

http://en.wikipedia.org/wiki/Luma_%28video%29
http://en.wikipedia.org/wiki/Chrominance

6

5. Hard to find a perfect edge trimming algorithm to get barcode region

I tried many edge trimming algorithms to detect barcode area. Their ideas are

more or less the same. They are about looking at black and white pixels. One of

them is checking the scale of numbers of black and it of white pixels in the

rectangular box. If the scale is between a particular value and another, the area

inside the rectangular box is treated as barcode region; another algorithm is that,
calculate the number of non-black-or-white pixels, if it is less than a particular

value, this area would be treated as barcode region.(Because barcodes are all

constructed by black colour and white colour).

But most of them do not work very well. Additionally, it costs too much resource.
To mobile devices it is a big problem. For these reasons, I decided to throw this

part away from the project.

6. Image gridding problem

What image gridding does is to try to convert curving barcode lines(both black

lines and white lines) into straight lines. The idea is that read two continuous

pixels above and two continuous pixels below the target pixel. Work out the

average y axis, take this average value and set the y axis of five of them to this

value, then move to the next.

It relies on edge trimming. If edge trimming is good and could detect the exact

barcode region, it might work well. But if edge trimming was not doing well, it

will be a useless function. As I decided to throw edge trimming, there is no point
to do image gridding any more.

7

2. What is achieved

 Scan and recognize barcode in real time(Code 39 only)

 Display recognized barcode(implying student id)

 Retrieve student details from web server according to the found student id

 Display student details when succeed retrieve from web server or an error

message otherwise

 Built a dummy student web server and a dummy database

 Check and response for empty or invalid user name or password inputs and

invalid student ids.

Therefore, all main functionalities are achieved.

8

3. What is not achieved

3.1 A red scan line in the middle of the camera preview

frame

The assist red scan line is mentioned in earlier manual(design manual). The purpose
is to assist scanning barcode, like a sighting device for a gun. With this scan line, users

could capture barcode image in good quality(not much oblique or rotary). So it

improves recognizing efficiency. But I have no idea how to draw it and keep it above

the camera preview surface. It would disappear after the surface updates. Although

it is a good idea and is used by many existing barcode scanners , I have to abstain it.

3.2 Log of previous recognized barcode

It’s another useful function, but I’ve got no time to finish this function. It helps users
to review previous recognized barcodes(student ids).

3.3 Management system for web server

Web management system to manage dummy student database is not achieved. As a
result system administrators can only insert, update or delete student details using

MySQL command line. As the MBR entire project is mainly a mobile project on

Android system rather than a web project and is about to recognize student card

barcode, web management system is planned to be an addition region.

However, a web server for receiving http request from both MBR client application

and browsers is achieved. It could retrieve student details from accessing MySQL

database according to student ids. If the server found the student id, it will return the

details of this student. Otherwise, it will return a “student not found” message.

9

4. What I learned

From this project I have learnt how the Android framework works, its message queue

system, knowledge about pixel format and how Android processes image data. And

how to use Spring framework to build a web server connected to MySQL database.

5. What would do differently

I would make changes on design model. I found it difficult following a waterfall

software process model. When have my design done, I can’t say it’s correct for sure.

There would always be something that haven’t been concerned about but should be

taken into account. For example, in class design, I think I need five classes to achieve
the goal, but later when coding, I find more assisted classes are needed. If starting

from scratch, I wish to do a part of design then do a part of coding, and then do the

other parts of design then do the other parts of coding. In this way it would be easier

do coding and writing design manual I think.

10

6. Updates to earlier reports

6.1 Research

Two more significant researches will be updated here. One is the type of barcode

used for student ID card, and another one is the pixel format used for camera

preview images on Android. They are Code 39 barcode and YCbCr(uses NV21
encoding) pixel format[5]. In the case of this Mobile Barcode Recognition project, we

concern about the barcode encoding rule so that we can do barcode decoding, and

the pixel format structure so that we are able to do image pre-processing.

1. Code 39 encoding rule

Table: Code 39 encoding rule[7]

2. YCbCr(uses NV21 encoding) pixel format

YCbCr(uses NV21 encoding) is the default format for camera preview images.[5]

11

Below are some descriptions of NV21 encoding.

“These are two-plane versions of the YUV 4:2:0 format. The three components are

separated into two sub-images or planes. The Y plane is first. The Y plane has one

byte per pixel. For V4L2_PIX_FMT_NV12, a combined CbCr plane immediately

follows the Y plane in memory. The CbCr plane is the same width, in bytes, as the Y

plane (and of the image), but is half as tall in pixels. Each CbCr pair belongs to four

pixels. For example, Cb0/Cr0 belongs to Y'00, Y'01, Y'10, Y'11. V4L2_PIX_FMT_NV21 is
the same except the Cb and Cr bytes are swapped, the CrCb plane starts with a Cr

byte.

If the Y plane has pad bytes after each row, then the CbCr plane has as many pad

bytes after its rows.”[4]

Table: YCbCr byte order[4]

12

6.2 Design Manual

6.2.1 GUI

There are some GUI improvements in Result Display UI and Detail Display UI

 Result Display UI:

Screenshot: Result display UI

13

 Detail Display UI:

Screenshot: Detail display UI

 Student not found by web server in database

Screenshot: Student not found UI

14

 Login fail, show a alert message.

Screenshot: Login fail UI

15

6.2.2 Domain Model

The domain model has changed a lot:

 Disable BarcodeDetector and BarcodeSplitter

 ImageSource charges the works of BarcodeProcessor
 Add ResultActivity and ResultActivityHandler to display result and student

details

 Add StudentDetail class to encasulte student details

Diagram: Domain model

Class functions please see class diagram below.

16

6.2.3 Class Diagram

Diagram: Class diagram

17

6.2.4 Web server

The web server uses Spring framework to construct the student web service.

Because I find it easier to build a web server this way. The framework will do lots of

work for you.

This is StudentServer hierarchy, it includes source code, relied libraries, some

configure files and an index page.

Chart: Web server hierarchy

The server provides one Login service, but this login service actually does both login

and retrieving. When client connect to the server, it sends login user name and

password with student id together. So once LoginController receive the request, it

18

checks validity first. If valid, it retrieves database(by calling retrieve(studentId)

function) with studentId and it returns a response with retrieve result to the client

afterwards. If not valid, it returns a response with a message of “login fail” to the

client.

19

7. Module description

(Modules do not include web server.)

Chart: Modules

Image Capture(main module):

In MBR project, the Image Capture plays a double role which is both image

capture module and main module. It firstly is a main module which provides an

entry to the entire application, and then is an image capture module which

request capture function and auto focus function.
 Functionalities include:

 Starting and initializing application

 Connecting camera drive and initializing camera settings

 Request image capturing and auto focus

 Send captured image data to Decoder

Image pre-processing:

This module provides a do thresholding function. And this do thresholding

function combines grey scaling, median filter and thresholding together. The

purpose for this change is to minimize usage of cpu resource. If we do them

separately, cpu need to read the captured image data three times, which for

mobile devices is a big expense. Although in function design, it’s not a good habit,

but reading it one time and do all three functionalities does save lots of

resource.

 Functionalities include:

 Do thresholding

Decoder:

Image Capture

(main module)

Image pre-
processing

Decoder
Result&Detail

Display
HttpClient

20

Decoder does all heavy works about decoding barcodes. A decoding process flow

chart(omit exceptions in this chart):

Chart: Decode Process Flow

Result&Detail Display:

21

In this module, once get the recognized barcode(implying student id), a new

thread will be started to display result and connect to web server.(Because

connecting to web server may cause time delay and application would probably

be treated as no response and stopped by system, so start a new thread to do it.)

 Functionalities include:

 Display recognized barcode

 Start a HttpClient to retrieve detail from web server

 Display details if succeed, show error message otherwise

HttpClient:

This module charges sending http request to web server and receiving response

from the server. It would send login user name and password with the

recognized student id together to web server by POST method, and parses the
http response into readable information by using JSON technique.(the web

server also uses JSON to encapsulate http response).

Functionalities include:

 Send http request

 Receive http response

 Parse http response into readable information

22

8. Testing

Project has been tested in different light conditions and for up to twenty different

barcode images or student cards.

8.1 Functional testing

 In different conditions

Light

Condition

Good

Image

Condition

Complete

Sample

Image

Readable

or Not

Yes

Recognized

Barcode

C00131028

23

Light

Condition

Good

Image

Condition

Almost complete

Sample

Image

Readable or

Not

Yes

Recognized

Barcode

C00131028

Light

Condition

Good

Image

Condition

Upper part masked

Sample

Image

Readable or

Not

Yes

Recognized

Barcode

C00131028

24

Light

Condition

Good

Image

Condition

Bottom half masked

Sample

Image

Readable or

Not

Yes

Recognized

Barcode

C00131028

Light

Condition

Normal

Image

Condition

Bottom half masked

Sample

Image

Readable or

Not

Yes

Recognized

Barcode

C00131028

25

Light

Condition

Bad

Image

Condition

Complete

Sample

Image

Readable or

Not

Yes

Recognized

Barcode

C00131028

Light

Condition

Awesome

Image

Condition

Complete

Sample

Image

Readable or

Not

No

Recognized
Barcode

null

26

 For different barcodes or student cards

Type Student card

Sample

Image

Readable
or Not

Yes

Recognized

Barcode

C00131028

Type Other barcode

Sample

Image

Readable

or Not

Yes

Recognized

Barcode

CHIUDW

27

 Read reversely

Is reversed Yes

Sample
Image

Readable

or Not

Yes

Recognized

Barcode

C00131028

8.2 Reliability testing

 Input empty user name or password

Response

28

 Input invalid user name or password

Response

 Detect an invalid student id

Response

8.3 Recognize time testing

From over 50 sample barcodes, the result shows generally the time for recognize one

barcode is about 2-4 seconds.

29

9. Conclusion

From testing, we conclude the recognition rate of MBR application is over 95% and

could suit different light condition except some really dark condition and could read

in both positive sequence and reserve sequence, and it connecting to server function
works well.

30

Reference

1. “user feature”, Android Developers, web.

 <http://developer.android.com/guide/topics/manifest/uses-feature-element.html>

2. “Camera.PictureCallback”, Android Developers, web.

<http://developer.android.com/reference/android/hardware/Camera.PictureCallbac

k.html>

3. ZXing Project Home, Google Code, web. <http://code.google.com/p/zxing>

4. “V4L2_PIX_FMT_NV12 ('NV12'), V4L2_PIX_FMT_NV21 ('NV21'), YUV Formats”,

KERNEL.org, web. <http://www.kernel.org/doc/htmldocs/media/re18.html>

5. “PixelFormat”, Android Developers, web.

<http://androidappdocs.appspot.com/reference/android/graphics/PixelFormat.htm>

6. “YCbCr”, WIKIPEDIA, web. <http://en.wikipedia.org/wiki/YCbCr>

7. “The Encoding Principle and the Design of Code 39 Used in Libraries”, YANG Jing,

GUAN Yanhui and CAO Janhui, Hebei Normal University of Science & Technology,

China.

